

EXAMINATIONS COUNCIL OF SWAZILAND Swaziland General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER		CANDIDATE NUMBER			
PHYSICAL SCI	ENCE		6888/02		
Paper 2 Structur	red Questions	Oct	October/November 2018		
			1 hour 15 minutes		
	wer on the Question Paper. aterials are required.				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Do **not** write in any barcodes.

Answer all questions.

You may use an electronic calculator.

A copy of the Periodic Table is printed on page 17.

You may lose marks if you do not show your working or if you do not use appropriate units.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

This document consists of 17 printed pages and 3 blank pages.

© ECOS 2018 [Turn over

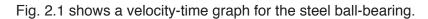

1 Table 1.1 shows the electronic configuration of some elements in the Periodic Table.

Table 1.1

symbols of elements	Li	Ве	В	С	N	0	F	Ne
electronic configuration	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8

(a)	Explain why the elements in Table 1.1 belong to the same period in the Periodic Table.	
	[1	1]
(b)	Identify the element, in Table 1.1, that is	
	(i) in Group VI,	1]
	(ii) a metal[1	1]
(c)	Describe how an ionic bond is formed between magnesium and fluorine.	
	[2	2]
(d)	Graphene is an allotrope of carbon.	
	Explain why graphene has a high melting point.	
	[2	21

2 A 0.1 kg steel ball-bearing is released from a stationary helicopter 1000 m above the ground.

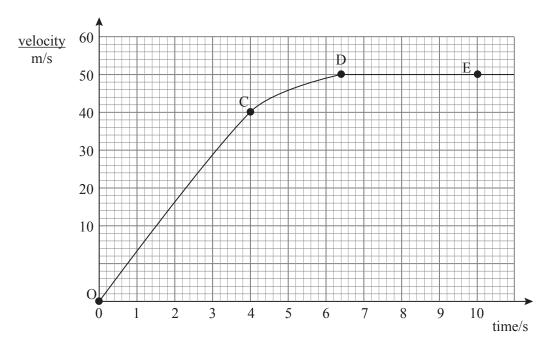


Fig. 2.1

(a)	Define the term <i>velocity</i> .
	[2]
(b)	State the times between which the acceleration of the steel ball-bearing is non-uniform.
	[1]
(c)	Describe the motion of the steel ball-bearing and comment on the forces acting upon it, in the intervals ${\bf OC}$ and ${\bf DE}$.
	OC
	[2]
	DE
	[2]

(d)	Calculate th	ne kinetic energy	of the ball between	points D and E .

.....[3]

3	A student prepares an insoluble salt, lead(II) iodide, by mixing solutions of lead(II) nitrate
	and potassium iodide.

The equation for this reaction is

$$Pb(NO_3)_2 + 2KI \longrightarrow Pbl_2 + 2KNO_3$$

The student uses 500 cm³ of 1 mol/dm³ lead(II) nitrate solution.

(a) Calculate the relative formula mass, M_{I} , of lead(II) nitrate.

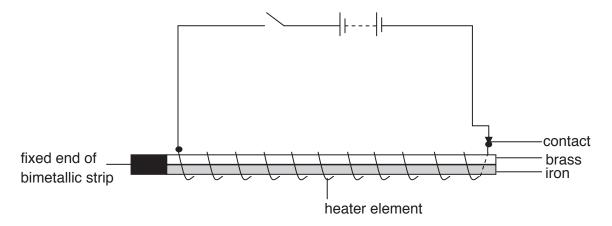
(b) (i) Calculate the number of moles of lead(II) nitrate in 500 cm³ of 1 mol/dm³ lead(II) nitrate.

(ii) Calculate, using Avogadro's constant, the number of particles in 500 cm³ of 1 mol/dm³ lead(II) nitrate.

[The Avogadro's constant is 6.02×10^{23} /mol]

Ţ.	O 1	ı
	رے	ı

(c) Calculate the mass of lead(II) iodide produced.


[The formula mass of lead(II) iodide is 461]

4	(a)	Soli	ds, liquids and gases expand when heated and contract when cooled.
		(i)	State and explain, in terms of intermolecular forces, the relative order of expansion of solids, liquids and gases.
			expand most
			expand least[1]
			explanation
			[2]
		(ii)	State one example of thermal expansion.

(b) Fig. 4.1 shows a bimetallic strip, made of brass and iron.

The bimetallic strip is placed in a heater circuit to control the temperature of an incubator.

	Fig. 4.1
(i)	When the heater has been switched on for a period of time, it is then automatically switched off by the bimetallic strip. (Brass expands more than iron).
	Describe how the heater is switched off by the bimetallic strip.
	[2]
(ii)	A thermocouple thermometer is used to measure the temperature in the incubator.
	State the physical property that varies with temperature in a thermocouple thermometer.
	[1]
(iii)	A thermocouple thermometer is preferred over a liquid-in-glass thermometer to measure the temperature in the incubator, because of its sensitivity.
	Explain what is meant by sensitivity of a thermometer.
	[2]

5 Fig. 5.1 shows a strip of photographic paper which uses an endothermic reaction.

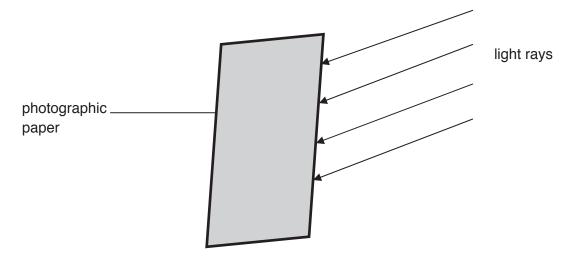


Fig. 5.1

(a)	(a) Name a silver halide that is found in the photographic paper in Fig. 5.1.					
		[1	1]			
(b)	(i)	Describe the colour change that will be observed on the photographic paper if it is left exposed to the rays of light for more than 10 minutes.				
		[1	1]			
	(ii)	Name the type of reaction responsible for this change in colour in (b) (i).				
		[1	1]			
(c)	The	silver halide decomposes in the presence of light.				
	Wha	at is the role of light in this reaction?				
		[1	1]			
(d)	Pho	tosynthesis is an example of an endothermic reaction.				
		lain, with reference to bond formation and bond breaking, why photosynthesis is ar othermic reaction.	1			
		ro)1			

6 (a) Fig. 6.1 shows wavefronts produced when a stone is dropped into a pond at position **X**.

Two sides of the pond are indicated by letters ${\bf Y}$ and ${\bf Z}$.

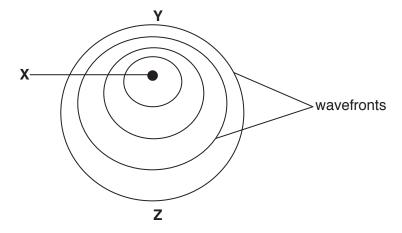


Fig. 6.1

(i)	State, giving a reason, which side of the pond is deeper, Y or Z .	
(ii)	State what happens to the frequency of the waves as they approach Y.	
		[1]

(b) Fig. 6.2 shows wavefronts approaching a narrow gap.

As the wavefronts pass through the gap they are diffracted.

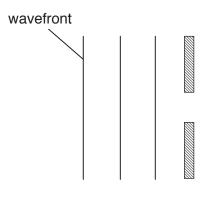


Fig. 6.2

- (i) Draw, on Fig. 6.2, three diffracted wavefronts after passing through the narrow gap. [2]
- (ii) The speed of the wavefronts before the narrow gap is 5 cm/s and two complete waves pass in one second.

Calculate the wavelength of the waves before passing through the narrow gap.

.....[2]

© ECOS 2018

(c) Fig. 6.3 shows refraction of waves.

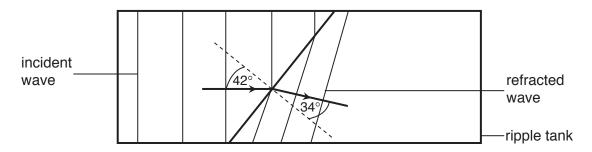


Fig. 6.3

The wave striking the shallow side of the tank at an angle of 42° , is refracted at an angle of 34° .

Calculate the refractive index of the shallow water with respect to the deep water.

.....[2]

[1]
[1]
and a gas
[1]
[1]
[2]

7

8

The motor of a crane uses five batteries connected in series to lift a 40 kg iron block.	
Each battery has a potential difference of 9 V.	
[use $g = 10 \text{ N/kg}$]	
(a) Calculate the total voltage of the five batteries.	
	[1]
(b) Calculate the weight of the iron block.	
	701
	[2]
(c) The crane lifts the block through a height of 4 metres in 5 seconds.	
Calculate	
(i) the gravitational potential energy of the iron block,	
	[2]
(ii) the power of the crane.	[-]
	[2]
	[2]

9 Table 9.1 shows the composition of normal air from the atmosphere and polluted air from Factory **X** in an industrial area in the Manzini region.

Table 9.1

gas	percentage (%) in normal air from the atmosphere	percentage (%) in polluted air from chimney
nitrogen	78	74
oxygen	21	17
carbon dioxide	0.04	5
other gases	0.96	4

(a)	One of the gases in the polluted air in Table 9.1 is sulfur dioxide.						
	(i)	Describe how the sulfur dioxide is produced.					
			. [1]				
	(ii)	Describe how sulfur dioxide affects buildings.					
			. [2]				
(b)	Des	cribe how the polluted air shown in Table 9.1 contributes to global warming.					
			. [2]				
(c)	The	carbon dioxide in Table 9.1 is also produced during the process of respiration.					
	Des	cribe how carbon dioxide is produced from respiration.					
			. [1]				

10 Fig. 10.1 shows a cross-section of a moving-coil microphone.

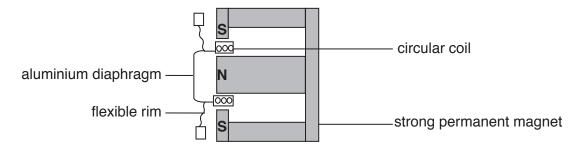


Fig. 10.1

(a) The aluminium diaphragm vibrates when hit by sound waves.

State the effect of using less turns in the coil.

These vibrations cause the circular coil attached to the diaphragm to also vibrate in-between the poles of the magnet.
State and explain the effect of the vibrations on the circular coil.

|
 | |
|------|------|------|------|------|------|------|------|------|------|-----|
|
 | |
|
 | [2] |

(b)	Another moving-coil microphone with a smaller number of turns is hit by the same
	sound waves as in (a).

r.a	
	П

(c)	State the main energy changes in the microphone.

(d)	Name another device that uses a principle similar to the one used in the moving-coil
	microphone.

[1]

Decaying organic matter releases methane as one of the products.

(a) Draw the structural formula of methane.

[1]

(b) Methane belongs to the homologous series of alkanes.

State one characteristic of the homologous series of alkanes.

[1]

(c) Longer-chained alkanes are cracked to form a mixture of shorter-chained alkanes and alkenes.

State two conditions for the catalytic cracking of alkanes in industry.

DATA SHEET
The Periodic Table of the Elements

	_		→ *		I .		17					
	Key		* 58–7 † 90–1	223 Tr Francium 87	Caesium 55	Rb Rb Rubidium	39 Potassium 19	23 Na Sodium	7 Li Lithium		_	
ь	×	Ø	1 La 03 A	88	56	ω	20	122	4			
			nthano \ctinoic	226 Rad ium	Barium	27	40 Ca Calcium	24 Mg Magnesium	9 Be Beryllium		=	
b = atomic (proton) number	X = atomic symbol	a = relative atomic mass	* 58–71 Lanthanoid series † 90–103 Actinoid series	227 Ac Actinium + 89 + 1	Lanthanum	89 Yttrium	45 Sc Scandium					
					Hafnium 72	91 Zr Zirconium 40	48 Titanium 22					
Thorium 90	궄	232	140 Ce Cerium		Tantalum	Niobium 41	Vanadium 23					
Protactinium 91	Pa	231	141 Pr Praseodymium 59		Tungsten	96 Mo Molybdenum 42	52 Cr Chromium					
Uranium 92	C	238	Neodymium 60		Rhenium	Tc Technetium 43	Manganese 25					
Neptunium 93	Np	237	Promethium 61		Osmium	Ruthenium 44	56 T 0 Iron			1 Hydrogen		
Plutonium 94	Pu	244	150 Sm Samarium 62		Ir Ir Iridium	Rhodium 45	59 Co Cobalt		'			Gro
Americium 95	Am	243	152 Eu Europium 63		Pt Pt Platinum	106 Pd Palladium 46	59 N ickel					Group
96	Cm	247	157 Gd Gadolinium 64		Au Gold	108 Ag Silver	64 Cu Copper					
Berkelium 97	Ŗ	247	159 Tb Terbium 65		Hg Mercury	112 Cd Cadmium 48	65 Zn Zinc					
Californium 98	<u></u>	251	163 Dy Dysprosium		7.1 Thallium	115 In Indium	70 Ga Gallium	27 A <i>l</i> Aluminium	11 Boron		=	
Einsteinium 99	Es	252	165 Ho Holmium		Pb Lead	119 Sn	73 Ge Germanium	28 Si Silicon	12 C Carbon		 	
Fermium 100	Fm	257	167 Fr Erbium		Bismuth 83	122 Sb Antimony 51	75 As Arsenic	31 P Phosphorus	14 N Nitrogen		<	
Mendelevium 101	Md	258	169 Tm Thullium 69		Po Polonium 84	128 Te Tellurium 52	79 Se Selenium	32 9 Sulfur	16 O Oxygen		<	
Nobelium 102	No	259	173 Yb Ytterbium		Astatine 85	127 I lodine	80 Bromine	35.5 Q/ Chlorine	19 T Fluorine		VII	
Lawrencium 103	Ļ	260	175 Lu Lutetium		Rn Radon 86	131 Xe Xenon	84 Krypton 36	40 Ar Argon	20 Ne Neon	4 He lium 2	0	
S 2	040			_			1888/02/O/N	/2019				

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

BLANK PAGE

BLANK PAGE

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECOS) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

© ECOS 2018 6888/02/O/N/2018